Certain multipliers of univalent harmonic functions
نویسندگان
چکیده
منابع مشابه
Certain multipliers of univalent harmonic functions
Inequalities involving multipliers using the sequences {cn} and {dn} of positive real numbers are introduced for complex-valued harmonic univalent functions. By specializing {cn} and {dn}, we determine representation theorems, distortion bounds, convolutions, convex combinations, and neighbourhoods for such functions. The theorems presented, in many cases, confirm or generalize various well-kno...
متن کاملStability for certain subclasses of harmonic univalent functions
In this paper, the problem of stability for certain subclasses of harmonic univalent functions is investigated. Some lower bounds for the radius of stability of these subclasses are found.
متن کاملA certain convolution approach for subclasses of univalent harmonic functions
In the present paper we study convolution properties for subclasses of univalent harmonic functions in the open unit disc and obtain some basic properties such as coefficient characterization and extreme points.
متن کاملOn Certain Class of Harmonic Univalent Functions
Abstract -A complex-valued functions that are univalent and sense preserving in the unit disk U can be written in the form ( ) ( ) ( ) f z h z g z , where U(z) and g(z) are analytic in. We will introduced the operator D which defined by convolution involving the polylogarithms functions. Using this operator, we introduce the class HP(,, n) by generalized derivative operator of harmonic un...
متن کاملa certain convolution approach for subclasses of univalent harmonic functions
in the present paper we study convolution properties for subclasses of univalent harmonic functions in the open unit disc and obtain some basic properties such as coefficient characterization and extreme points.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2005
ISSN: 0893-9659
DOI: 10.1016/j.aml.2005.02.003